

, I
I

Report No. 4666 Bolt Beranek and Newman Inc.

DEVELOPMENT OF A VOICE FUNNEL SYSTEM

QUARTERLY TECHNICAL REPORT NO. 9
1 August 1980 to 31 October 1980

August 1981

This research was sponsored by the
Defense Advanced Research Projects
Agency under ARPA Order No.: 3653
Contract No.: MDA903-78-C-0356
Monitored by DARPA/IPTO
Effective date of contract: 1 September 1978
Contract expiration date: 30 November 1980
Principal investigator: R. D. Rettberg

I.

Prepared for:

Dr. Robert E. Kahn, Director
Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Boulevard
Arlington, VA 22209

The views and conclusions contained in this document are those of
the author and should not be interpreted as necessarily
representing the official policies, either express or implied, of
the Defense Advanced Research Projects Agency or the United
States Government.

Report No. 4666 Bolt Beranek and Newman Inc.

FIGURES

Processor Node Components 3
Transmitter Finite State Machine 12
Receiver Finite State Machine 15
One-word Read Transaction -- Timing Diagram 19
Block Transfer Transaction 21

141

4

A 4.

r

-ii- [

11

Report No. 4666 Bolt Beranek and Newman Inc.

1. Introduction

This Quarterly Technical Report, Number 9. describes aspects

of our work performed under Contract No. MDA903-78-C-0356 during

the period from 1 August 1980 to 31 October 1980. This is the

ninth in a series of Quarterly Technical Reports on the design of

a packet speech concentrator, the Voice Funnel.

This report describes the hardware design of the Butterfly

Switch, which provides communication between Processor Nodes of

the Butterfly Multiprocessor, the computer system upon which the

Voice Funnel is constructed.

1.

Wa- 1

Report No. 4666 Bolt Beranek and Newman Inc.

2. Butterfly Switch Message Processing

The Butterfly Multiprocessor consists of a number of

Butterfly Processor Nodes connected together via a multi-level

network of Butterfly Switch Nodes. The Processor Node hardware

and the Switch Node hardware and topology have been discussed in

the Design Report (Rettberg 79], and the Switch Node hardware was I

also described in Quarterly Technical Report Number 2 [Hoffman

79]. The reader is assumed to be familiar with Chapter 3 of the

Design Report and with the general organization of the Processor

Node hardware. In this report we discuss the actual message

protocols which have been implemented and summarize the design

changes made since the Design Report was written. Most of the

changes are minor and easily explained, but the area of deadlocks

and flow control has changed enough so that we have included a

new section dealing with these issues.

The Butterfly Switch is critical to the operation of the

Butterfly Multiprocessor, since all communications between

Processor Nodes, including many processor-memory references, must

be performed by the Butterfly Switch. The current design of the

Processor Node's interface to the Butterfly Switch was described

in general terms in a previous report [Rettberg 80]. The present

report provides a far more detailed description of the Switch and

its transactions.

-2

Report No. 4~666 Bolt Beranek and Newman Inc.

Memory Loca Prceso

Management MeorM" Nods
r Unit Controller Controller

BosrpSwitch Butterfly Switch Output Bus

Transnitter A 4MB/sec

Processor Node Components
Figure 1

Report No. 4666 Bolt Beranek and Newman Inc.

The processor nodes are organized as shown in Figure 1. All

switch transactions are initiated by the Motorola MC68000 CPU; an

MC68000 service request causes micro-interrupt code in the

Processor Node Control (PNC) to transmit an appropriate message

using the Butterfly Switch Transmitter; this message is routed

through a number of Switch Nodes, and finally appears at the

Butterfly Switch Receiver in the destination processor. There

the receiver causes microinterrupt code in the PNC to take the

action specified in the message, which may include sending one or

more additional messages to various other processors. In some

cases the MC68000 that made the request waits for one of these

responses to complete the transaction, while in other cases it

simply initiates the transaction and proceeds immediately.

Timers are used to recover from certain error conditions.

A variety of me3sage transactions are provided. Each

message includes at least the address of its destination

processor, its message type, some data bytes, and a checksum.

1< 'There are several different classes of messages: fixed vs.

variable length messages, messages initiated by the MC68000 vs.

those initiated by other messages, and messages which may

initiate other messages vs. those which will not. These

distinctions are important for an understanding of the way

potential deadlocks have been avoided and of how the hardware is

used.

..-4.-

r I

Report No. 4666 Bolt Beranek and Newman Inc.

The Processor Node implements these types of switch

transactions: single word/byte reads or writes, block transfers,

interrupt requests, Processor Node resets, and a class of special

transactions which includes event synchronization, queueing and

dequeueing, etc.

The single word transactions are initiated by the memory

mapping hardware; that is, the memory mapping hardware maps

ordinary MC68000 memory accesses into physical addresses which

refer to a specific location in a specific processor via the

switch. Since all memory accesses are handled by the PNC, these

remote accesses appear no different from ordinary local accesses

except for their speed.

The MC68000 explicitly initiates the other transactions by

storing the address of a parameter block in one of several

special locations which the PNC recognizes. This causes the PNC

microcode to check the parameters and send out the appropriate

message(s). The receipt of certain messages from the switch can

cause the PNC to store into main memory, read from main memory,

* I update queues, mark processes runnable, etc.

At this time all but the special transactions have been

specified, coded, and debugged. The nature of the special

transactions has been specified, but some details remain to be

worked out. The final specifications for the major special

transactions must be done with the details of the operating

-5-

Report No. 4666 Bolt Beranek and Newman Inc.

system in mind, as they must work hand-in-hand to provide an

efficient real-time environment. As far as the switch is

concerned, these special messages are similar to the messages

which have already been implemented.

2.1 Design Changes

This section documents the design changes made since the

Design Report and QTR No. 2 were written. In addition to the

changes discussed in this section, significant changes have also

occurred in the deadlock and flow control areas. They are

described later.

2.1.1 Error Handling

Error detection and handling occurs in several ways:

- Each message includes a 4-bit checksum, which is 4
generated and checked automatically.

2 - Variable length block transfer data messages include an
i 42additional checksum early in the message, just after

the address and length information.

- If alternate paths are available, rejected messages are
automatically retried using the paths cyclically.

- Timers detect dead states for all messages and for the
CPU when it is waiting for a reply.

- The application program or operating system may make

additional checks as appropriate.

With these detection facilities, errors can be detected in the

receiver, the transmitter, the PNC, and the CPU.

-6

Report No. 4666 Bolt Beranek and Newman Inc.

A four bit checksum in each message will detect most errors,

but a given error will not be detected with a probability of 6%.

This means that if errors are frequent the hardware must be

considered broken, taken out of service, and fixed. Although one

could try to retransmit a message with a bad checksum, it is

safer to declare the hardware broken and get it fixed before it

introduces undetected errors into the system. With this

philosophy, the checksum error handler aborts the transaction in

progress and reports the error to the operating system at the

destination (where the error is detected). The operating system

will include monitoring code which will attempt to locate the

failing hardware and to resume fault-free operation using a

subset of processor and/or switch nodes. Summaries of these

errors will help to diagnose the more complex types of failure.

In a switch with extra columns, alternate addressing paths

are available. These paths can be enabled and disabled

independently by the MC68000. If a path fails solidly, the

switch will quickly and automatically retry using alternate paths

as long as the message continues to be rejected. However, if the

path makes data errors, the operating system will run a

diagnostic to identify the failing path, log it, and disable the

path until the hardware has been repaired.

-7-

Report No. 4666 Bolt Beranek and Newman Inc.

2.1.2 Block Transfers

At the time of the Design Report, we planned to implement

two types of block transfer. One would have transferred data

from the originating node as a variable length write request; the

other would have transferred data to the originating node via a

variable length reply. These have been replaced by a single,

more general transaction in which a node (the originating node)

may request the transmission of a block from any node to any

node. There are now no restrictions on the locations of the

source, destination, or originating node.

Because system latency requirements are proving easy to

achieve, we are able to increase the maximum block size from 16

words to (approximately) 500 words. In the Voice Funnel this

will be big enough to handle all normal data block transfers as a

single operation. If longer transfers are required, the MC68000

software must break up the blocks into smaller transfers.

As a result of the increased maximum block size, we were

able to simplify the block otransfer by removing from the micro-

machine the capability of breaking up block transfers which are

too large into a series of smaller transfers. Since the maximum

block transfer size has been enlarged and is, in fact,

application dependent, it is more natural to perform this

function at the application code level in the central processor.

-8-

rm D

I
Report No. 4666 Bolt Beranek and Newman Inc.

JLong messages have the advantage of reduced set-up time and

contention. There is no real advantage to using shorter messages

except for reduced latency. Even with 16 word messages it would

not have been feasible to fit the entire message in a hardware

buffer. The originating processor node becomes free as soon as

the block transfer request has been accepted by the source

processor node; however, accesses to either the source or

destination processor nodes during the transfer are likely to be

rejected. Error performance is not affected, since all errors

indicate broken hardware. I/0 DMA transactions are also not

affected, since they have priority over block transfers, but

MC68000 performance is reduced in the source and destination

processors. In the absence of other activity the block transfer

will use 75% of the total memory bandwidth, leaving 25% for the

central processor.

2.1.3 Switch Performance and Flow Control

Instead of running the switch at 12 MHz and the CPU at 8

MHZ, we have chosen to run both at 8 MHz (a 125 nanosecond clock

interval). There are at least two ieasons for this change. One

is the engineering difficulties involved in using two different

clock speeds and designing the transmitter and receiver micro-

machines to cope with this mismatch. Another is the amount of

available memory bandwidth. The current switch design provides a

maximum bandwidth of 32 Mbps point-to-point, while the current

-9-

'73

Report No. 4666 Bolt Beranek and Newman Inc.

memory system provides a maximum bandwidth of about 40 Mbps.

This seems to be a good match and leaves a small amount of memory

bandwidth available for other uses. The switch hardware itself

could be changed to run at 64 Mbps, but this would not improve

overall performance, due to the design of the rest of the system.

Although the Design Report states that we do not need flow

control in the switch, we have since concluded otherwise. Two

types of flow control are required, since the transmitting or

receiving PNC may not be able to keep up with the switch at all

times. This flow control operates at a low level and does not

affect the CPU in any way. The details are discussed below.

2.2 Message Processing

This section describes how messages are formatted,

transmitted, and received. Such a description requires a fairly

detailed explanation of how the hardware is organized. We

therefore begin by describing the hardware elements and how they

are used, and introduce the concepts and terminology required to

discuss specific transactions. We then follow two example

transactions through the system in order to illustrate the -.

interactions involved. First we will consider a simple one-word

read transaction, then a more complex example, the block transfer

transaction.

-10- I
to

I
Report No. 4666 Bolt Beranek and Newman Inc.

2.2.1 Transmitter and Receiver Micro-machines

In order to transmit messages, the PNC makes use of an

independent micro-machine, called the transmitter (see Figure 2).

The transmitter communicates with the PNC via a 16-word dual

ported memory called the TxRAM and via various control signals.

The TxRAM is divided into two independent buffers. One of these,

the reguest buffer, is used to initiate new transactions; the

other, the acknowledgement buffer, is used to send secondary

messages in response to messages coming in from the switch. Only

one type of message may be going out at any one time, but a

message of the other type may be prepared and stored in the TxRAM

while the first is being transmitted.

All switch transactions originate in the MC68000, and are

initiated by microcode in the PNC. No matter how complex the

transaction, the first step is simple: a message is transmitted

which requests the receiving PNC to take some action. Before

this can happen the previous message of this type must have

completed; in other words, the request buffer must be empty. The

PNC will wait for the request buffer to become available. In the

meantime it will continue to service non-MC68000 micro-interrupt

service requests, but the MC68000 will be idle. Once the request

buffer comes free, the PNC starts to build a message in the TxRAM
d

and signals the transmitter to start sending the message. Since

the PNC is uninterruptable at this point, it can start

transmission before the message is complete.

122777-7117-

4' Fr 1 - ' - = q .

Report No. 4~666 Bolt Beranek and Newman Inc.

PNC Contr~ol Signals

Mer... Dae Bu

Srrav RRoutinee an

AddirePor RAMato

TrnmttramitrFnt Stt Mahn
SFigur 2

Synchronou 12k -aaCocs

Ro Cvrrnil

Report No. 4666 Bolt Beranek and Newman Inc.

From the transmitting Processor Node's point of view there

are two kinds of request message: gu messages which always

wait for a reply message to be returned by the destination

processor node, and onrol. messages which do not. For query

messages, the PNC sets a return address register in its micro-

interrupt system and enables a micro-interrupt on end-of-

transmission. For control messages, it releases the MC68000. In

either case, it then sets a timer and returns to its normal idle

loop.

The transmitter microcode is now responsible for getting the

message to the destination, if possible. Before it can start

sending the message, it may have to finish sending an

acknowledgement buffer message. When available, the transmitter

then attempts to send this message out one of four alternate

output paths. If the message is rejected, the transmitter

automatically tries another path. Once the message header is

accepted, the receiver may hold off the transmitter on a byte-

by-byte basis. At the end of the message the transmitter sends a

checksum.

When the message is completely transmitted, the transmitter

terminates, requests a PNC micro-interrupt at the address

specified in the return address register, and marks the request

buffer available. The PNC resets the timer and micro-interrupt

request, and, if a reply message is expected, sets the timer and

return address register to wait for the reply message. If the

- 13 -

Report No. 4666 Bolt Beranek and Newman Inc.

timer runs out, the PNC timer routine causes the transmitter to

abort, notes the error, and simulates a transmitter completion.

To accept incoming messages, the PNC makes use of another

independent micro-machine, called the receiver (see Figure 3).

The receiver communicates with the PNC via a 16-word dual ported

memory called the RxRAM and via various control signals. The

RxRAM is divided into two independent buffers. One of these, the

R-lY.P_ buffer, is used to accept messages which may generate

secondary messages; the other, the A-type buffer, is used to

accept messages which can be processed entirely within the

receiving Processor Node. Only a single message may be coming in

at any one time, but a message of one type may be held in the

RxRAM while a message of the other type is being received. The

special message "reset" is accepted even if both receiver buffers

are full, but all other messages are rejected if the appropriate

buffer has not yet been emptied by the PNC.

1-typ.e messages include all query messages and some control

messages; A-1,U_ messages include other control messages plus the

data messages discussed below. The reset control message needs

no resources and is always processed immediately by the receiver

itself, without intervention by the PNC and before the reset

takes effect. R-type messages do not generate a PNC micro-

interrupt and are therefore not processed by the PNC until the

transmitter acknowledgement buffer is available. The R-type

buffer becomes available as soon as the PNC has read the incoming

-14-

V

J Report No. 4~666 Bolt Beranek and Newman Inc.

to/from Butterfly
Switch Output Port

PNC Control Signals

Receiver Control2 24

Synhronabe oc CSwtcDt

Ara 36 16 16nit Dua
Pot RAMe

Reeie B
frooPCnonrPolB

is Hede Registner

To nMcrointeoupt Checksumu4C
ServieRste Register

5 1 Adrs Eeneortor

Data Bu

RevcRuiecei eginte SaeMahn

Figure 3

* 15

Report No. 4666 Bolt Beranek and Newman Inc.

message, but the acknowledgement buffer is only released when the

response to the previous R-type message is completely processed.

The situation is simpler for A-type messages, which are processed

immediately by the PNC. Both R-type and A-type messages are

rejected by the receiver unless the appropriate buffer is empty.

During the processing of an R-type message the PNC may need

to transmit one or more acknowledgement messages.

Acknowledgement messages are broken into two types: rel

messages which are sent directly in response to query messages,

and data messages which are unsolicited. At the receiver both

types go into the A-type buffer. The A-type buffer (and also the

acknowledgement buffer) have two sections, the header section and

the FIFO section. Messages which use these buffers may be short,

using only the header area; they may be long, using both the

header and the FIFO area; or they may be variable-length, using

the FIFO dynamically. Variable length messages are used during

the block transfer transaction, which is discussed below.

Each time the PNC assembles a message in the transmitter's

request or acknowledgement output buffers, it initializes one of

two timeout counters in order to detect deadlocks. Every 62.5

microseconds the memory refresh service routine increments both

counters. If the request timeout counter reaches zero, the

transmitter's request buffer is released, an error flag is set in

the PNC status register, and processing proceeds as if the

transmission had succeeded. Whenever a query-type request
/

- 16 -

,i

I
Report No. 4666 Bolt Beranek and Newman Inc.

message has been completely sent, a PNC micro-interrupt routine

resets the request timeout counter to wait for the reply to be

received. If there is no reply in the allotted interval, an

error flag is set in the PNC status register, and a (query)

type-dependent error routine is executed. If the acknowledgement

timeout counter reaches zero, a flag is set in the PNC's micro-

interrupt control register, and the transmitter's acknowledgement

buffer is released with no further direct action. Thus if a

transaction involves sending several acknowledgement messages, an

attempt will be made to send all of them even if some time out;

the PNC can test the bit to report whether previous

acknowledgement messages have timed out.

2.2.2 Example transactions

It is now possible to explain any of the fixed length

transactions without introducing any significant new concepts.

We will first examine a one word read transaction. The one word

write is somewhat simpler, but it is almost identical to the

first part of the block transfer transaction, which we will

discuss below.

To provide an understanding of the one word read

transaction we will examine its timing diagram, which shows the

various elements, their actions at various times, and the events

which trigger those actions. It is not possible, however, to

-17-

Report No. 4666 Bolt Beranek and Newman Inc.

illustrate in one diagram every conceivable timing relationship,

especially those involving errors, nor is it necessary to show

the complete hardware state at every point. Figure 4 shows the

details of a read transaction in which no errors occur. The

description of the transmitter and receiver in the previous

section should be detailed enough to allow the reader to

understand the transaction, and also to understand how the

scenario depicted in Figure 4 would be modified by the occurrence

of errors.

The hardware elements involved are listed in the left-hand

column; Processor Node A is shown performing a read from

Processor Node B. The state of each processing element

(run/wait, full/empty) is shown in the diagram. In cases where

both states are indicated, it means the state is unknown; the

actions shown are based on the worst case assumption that the

unknown state is 'full', and the transaction must wait for the

resource. We assume there is no contention in the switch itself.

The numbering scheme associates state changes with the events

which cause them. The first event is numbered one, 'Issue Read

Request'. The other events are numbered to suggest the order in

which they usually occur; where independent event sequences are

triggered, the sequences are numbered in parallel with different

letters appended to distinguish the sequences. For example,

event 14 is followed by the independent event sequences 15. 16,

... and 15A, 16A, and 17A. Timer events occur every 62.5

-18- I

Report No. 4~666 Bolt Beranek and Newman Inc.

Run CIu Rad Request Do" yeth

MCOMO- A wait _ _F
W, StartFilling Run Timor.,u Tms

CE)~ i):~:I~neAbort if Peaefor Abort if ..~ Acept

Run Request Bufter Timeaut Ocur Rel imotOcreLy

PNCA Idle ... T I IR..........

Request Buffer-A Empty
C)Start (1) Retry Cf)R.tr

Run7 Sedn

Transmitter - A Idle

Run ;et uy Fl eus

Receives-8 Idle

®revious® iI
Not EmptyReus

R -Type Buffer-U Empty

Not Empty
AdnwedeetEmpty Hda ro

Buffer-B
C~)Ree (ji) Run Timer, Abort if

Run TmeaqOccurs

PNC-B Idle
Send Z ®Retry ®Retry

Run

*Transmitter-11 Idle

* - Reject @ 20 (J) (Accept
1.Run Rjc

Receiver-A Il

* Not Empty

A-Type Buffer-A Empty

One-word Read Transaction -- Timing Diagram
Figure 4

-19-

Report No. 4666 Bolt Beranek and Newman Inc.

microseconds in each PNC, asynchronously with switch

transactions, and affect transaction processing only in case of

errors.

This diagram does not try to give actual timing information,

but only tries to show the order in which events occur and to

suggest the pipelining involved. We show what happens when

messages are rejected due to contention in the destination, but

ignore the possibility of contention in the switch, which is

handled in the same way. The likelihood of contention is load

dependent, and there will frequently be no contention of any

kind. In the absence of contention a one word read transaction

takes about 3.1 microseconds longer than a normal local memory

read.

Figure 5 illustrates a block transfer transaction, but in

somewhat less detail. Processor Node A is shown requesting node

B to send a block of B's memory to node C. We assume that all

elements are empty or idle initially, and omit the state of A's

request buffer and B's R-type buffer, which are similar to

Figure 4.

The transmitter acknowledgement buffer has room for about 6

bytes of FIFO buffering; the receiver A-type buffer has room for

about 14 bytes of FIFO buffering. If the receiver FIFO gets too

full, the receiver requests the transmitter to wait (send nulls);

if the transmitter FIFO empties, the transmitter sends nulls

- 20 -

Report No. 4666 Bolt Beranek and Newman Inc.

1-01@

or)

I.-a
@

@x

00

0
r

/-' 44 -A

V J4

00
V1-

*i e
'IB C. j .3 cc cI I I

J -21-

Report No. 4666 Bolt Beranek and Newman Inc.

unilaterally. Each word of data csuses a PNC micro-interrupt in

both nodes A and B. These micro-interrupts occur only if there

is room for more data in the transmitter buffer, or data ready to

be removed from the receiver buffer. A separate receiver micro-

interrupt initiates checks for various errors after all the data

bytes have been stored. There is an optional micro-interrupt

after a variable length message has been transferred, which is

not currently used for block transfers, but which would allow

multiple data messages or replies to be sent out.

It takes the PNCs 3 microcycles to process a word, while the

transmitter and receiver take 4 microcycles each. That means

that 25% of the PNC bandwidth is available for other tasks, such

as performing memory accesses for the MC68000. Since I/O DMA and

switch transfers have priority over MC68000 requests, it is

possible that the MC68000s may get no service at all, even though

the I/O system limits itself to 50% of the total PNC bandwidth.

Thus, too many long transfers can cause latency problems. Since

the usage pattern for block transfers and the latency constraints

for the MC68000 are application dependent, the application

designer must consider these issues.

2.3 Deadlocks and Flow Control

In most communications systems flow control is required to

prevent data from being lost, either initially while a

22

, 9

J
Report No. 4666 Bolt Beranek and Newman Inc.

communications channel is being established, or later, if some

processing element is unable to keep up with the system as a

whole. Introducing flow control mechanisms typically generates

two secondary problems: deadlocks and dead states. By dead

states we mean system states which persist indefinitely. These

can occur as a result of either hardware or software bugs, or as

the result of design deficiencies. Dead states which are the

result of system design are termed deadlocks. Our philosophy in

the switch was to avoid deadlocks by careful design, and to time

out all dead states caused by user error or hardware problems

external to a working processor node. Most dead states caused by

local hardware problems will also time out. The occurrence of

these dead states is reported to the local operating system. All

the software involved in processing switch transactions is

implemented in microcode, and once debugged, is not subject to

change.

In the Butterfly, dead states may arise for a number of

* reasons. Messages can be rejected due to switch contention (a

type of flow control), and this rejection can lead to dead states

in any of the following cases:

- The addressed hardware is missing, broken, or flooded
by some external malfunction.

- The local receiver is broken or flooded.

- The local transmitter or part of the switch is broken.

i
-23-

.

Report No. 4666 Bolt Beranek and Newman Inc.

Once a message has been accepted, an empty transmitter buffer or

a full receiver buffer can cause nulls to be sent. Broken

hardware can simulate these conditions, resulting in a dead

state. Finally, a dead state can occur when a message which

requires a reply is not processed due to a bad checksum or

hardware error.

Three dead states are timed out using two independent

timers. When a request is submitted to the transmitter, a timer

ensures that it goes out within a reasonable period. If a reply

is expected, the same timer is used to ensure that it arrives

within a reasonable period. A second timer does the same for the

transmission of acknowledgement messages. These timers are set

long enough so that the probability that they might be exceeded

by normal switch contention is negligible, but short enough so

that the operating system can recover smoothly if they occur.

Deadlocks are possible whenever a resource is needed to

complete a task, and the resource is already in use and cannot be

freed until the task completes. We have avoided deadlocks in

this design by providing two input buffers and two output buffers

in each processor node, and by adopting rules for how these

buffers are used. These rules are somewhat different from the

ones described in the Design Report.

Messages received in the A-type input buffer can always be

processed immediately by the PNC, independent of the state of the

- 24 -

Report No. 4666 Bolt Beranek and Newman Inc.

other buffers. There are no switch related PNC wait states which

cannot service the A-type buffer; thus there are no deadlocks

involved in sending to the A-type buffer. These messages can be

from either transmitter buffer. All MC68000 requests use the

request buffer, and all responses to incoming messages use the

acknowledgement buffer; as a result, these cannot conflict

directly. Messages from the acknowledgement buffer may be sent

only to the A-type buffer, so there are no deadlocks associated

with sending them. Messages sent to the R-type buffer are not

serviced until the acknowledgement buffer becomes free, which it

must do. Messages sent from the request buffer go either to the

A-type or to the R-type buffer, both of which have already been

shown to be deadlock free. Thus all four types of message are

deadlock free.

One of our early designs did have a deadlock problem, which

was discovered during performance simulation studies. The dual

buffer, fixed-purpose strategy outlined above solves this problem

and provides for useful pipelining under heavy load. Chapter 3

of the Design Report discusses an interesting alternative

-, approach, in which request messages hold open their path through

the switch, and wait for a reply to be generated. We briefly

considered this method late in the switch design phase, but

-- rejected it for several reasons:

- It would have required significant hardware additions
and changes.

*1 -25-SHIP 1

Report No. 4666 Bolt Beranek and Newman Inc.

- Its primary effect on performance (which would occur in
the case of the one-word read transaction under heavy
load) was hard to evaluate.

Although we have implemented a uni-directional switch, the

bi-directional switch has its advantages, and should also be

considered as a potential technique for use in other

implementations. If this were done, it would be useful to

compare the complexity and performance of the alternative

schemes.

T •

26

Li
S- 26- -

I

I Report No. 4666 Bolt Beranek and Newman Inc.

3. References

[Hoffman 79) Hoffman, M., "Development of a Voice Funnel System,
Quarterly Technical Report No. 2", Bolt Beranek and Newman Inc.,
Report 4143, June 1979.

[Rettberg 79] Rettberg, R. et al., "Development of a Voice Funnel
System: Design Report", Bolt Beranek and Newman Inc.,
Report 4098, August 1979.

[Rettberg 80) Rettberg, R., "Development of a Voice Funnel
System, Quarterly Technical Report No. 6", Bolt Beranek and
Newman Inc., Report 4563, November 1980.

I
I- 27 -

*1 , '

Report No. 4666 Bolt Beranek and Newman Inc.

DISTRIBUTION OF THIS REPORT

Defen Advan Rgar Projects Agency
Dr. Robert E. Kahn (2)
Dr. Vinton Cerf (1)

DeLfens Supl Servicef -- Wsigo

Jane D. Hensley (1)

Dfne Documentation Center (12.)

Dr. Danny Cohen (2)

MJ/LicoQn La"
Dr. Clifford J. Weinstein (3)

S&I International
Earl Craighill (1)

Rome Air vlopmeI Lni Center/RBU
Neil Marples (1)

Dfense Communications Agency
Gino Coviello (1)

2D." Beangk And Nema J=.
Library
Library, Canoga Park Office
R. Bressler
R. Brooks
P. Carvey
P. Castleman
G. Falk
J. Goodhue
E. Harriman
F. Heart
M. Hoffman
M. Kraley
A. Lake
W. Mann
R. Rettberg
P. Santos
E. StarrE. Wolf [j

- 28 -I,. .

